On Biharmonic Lorentz Hypersurfaces with Non-Diagonal Shape Operator
نویسندگان
چکیده
منابع مشابه
Hypersurfaces of a Sasakian space form with recurrent shape operator
Let $(M^{2n},g)$ be a real hypersurface with recurrent shapeoperator and tangent to the structure vector field $xi$ of the Sasakian space form$widetilde{M}(c)$. We show that if the shape operator $A$ of $M$ isrecurrent then it is parallel. Moreover, we show that $M$is locally a product of two constant $phi-$sectional curvaturespaces.
متن کاملhypersurfaces of a sasakian space form with recurrent shape operator
let $(m^{2n},g)$ be a real hypersurface with recurrent shapeoperator and tangent to the structure vector field $xi$ of the sasakian space form$widetilde{m}(c)$. we show that if the shape operator $a$ of $m$ isrecurrent then it is parallel. moreover, we show that $m$is locally a product of two constant $phi-$sectional curvaturespaces.
متن کاملBiharmonic Hypersurfaces in Riemannian Manifolds
We study biharmonic hypersurfaces in a generic Riemannian manifold. We first derive an invariant equation for such hypersurfaces generalizing the biharmonic hypersurface equation in space forms studied in [16], [8], [6], [7]. We then apply the equation to show that the generalized Chen’s conjecture is true for totally umbilical biharmonic hypersurfaces in an Einstein space, and construct a (2-p...
متن کاملDirac Operator on Embedded Hypersurfaces
New extrinsic lower bounds are given for the classical Dirac operator on the boundary of a compact domain of a spin manifold. The main tool is to solve some boundary problems for the Dirac operator of the domain under boundary conditions of Atiyah-Patodi-Singer type. Spinorial techniques are used to give simple proofs of classical results for compact embedded hypersurfaces.
متن کاملLk-BIHARMONIC HYPERSURFACES IN THE EUCLIDEAN SPACE
Chen conjecture states that every Euclidean biharmonic submanifold is minimal. In this paper we consider the Chen conjecture for Lk-operators. The new conjecture (Lk-conjecture) is formulated as follows: If Lkx = 0 then Hk+1 = 0 where x : M → R is an isometric immersion of a Riemannian manifold M into the Euclidean space R, Hk+1 is the (k+1)-th mean curvature of M , and Lk is the linearized ope...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Electronic Journal of Geometry
سال: 2017
ISSN: 1307-5624
DOI: 10.36890/iejg.584449